Lets see how to construct a square root spiral. Before conducting the experiment please go through and study the basic concepts of number line, concept of irrational numbers and Pythagoras theorem.

Materials Required

- 1. Coloured threads
- 2. Geometry box
- 3. Adhesive
- 4. Drawing pins
- 5. Nails
- 6. Sketch pens
- 7. Marker
- 8. A piece of plywood

Prerequisite Knowledge

- 1. Concept of number line
- 2. Concept of irrational numbers
- 3. Pythagoras theorem

Theory

A number line is a imaginary line whose each point represents a real number. The numbers which cannot be expressed in the form p/q where $q \neq 0$ and both p and q are integers, are called irrational numbers, e.g. $\sqrt{3}$, π , etc. According to Pythagoras theorem, in a right angled triangle, the square of the hypotenuse is equal to the sum of the squares of other two sides containing right angle. $\triangle ABC$ is a right angled triangle having right angle at B.

Therefore, $AC^2 = AB^2 + BC^2$

where, AC = hypotenuse, AB = perpendicular and BC = base

Procedure

- 1. Take a piece of plywood with dimensions 30 cm $\tilde{A} \cap 30$ cm.
- 2. Taking 2 cm = 1 unit, draw a line segment AB of length one unit.
- 3. Construct a perpendicular BX at the line segment AB using set squares (or compasses).
- 4. From BX, cut off BC = 1 unit. Join AC.
- 5. Using blue coloured thread (of length equal to AC) and adhesive, fix the thread along AC.
- 6. With AC as base and using set squares (or compasses), draw CY perpendicular to AC.
- 7. From CY, cut-off CD = 1 unit and join AD.

- 8. Fix orange coloured thread (of length equal to AD) along AD with adhesive.
- 9. With AD as base and using set squares (or compasses), draw DZ perpendicular to AD.
- 10. From DZ, cut off DE = 1 unit and join AE.
- 11. Fix green coloured thread (of length equal to AE) along AE with adhesive Repeat the above process for a sufficient number of times. This is called ?a square root spiral?.

Demonstration

From the figure, $AC^2 = AB^2 + BC^2 = 12 + 12 = 2$ or $AC = \sqrt{2}$. $AD^2 = AC^2 + CD^2 = 2 + 1 = 3$ or $AD = \sqrt{3}$ Similarly, we get the other lengths AE, AF, AG, ... as $\sqrt{4}$ or 2, $\sqrt{5}$, $\sqrt{6}$...

Observation

On actual measurement

Result

A square root spiral has been constructed.

Application

With the help of explained activity, existence of irrational numbers can be illustrated.

Viva Voce

Question 1: Define a rational number?

Answer: A number which can be expressed in the form of p/q, where $q \neq 0$ and p, q are integers, is called a rational number

Question 2: Define an irrational number?

Answer: A number which cannot be expressed in the form of p/q, where $q \neq 0$ and p, q are integers, is called an irrational number.

Question 3: Define a real number?

Answer: A number which may be either rational or irrational is called a real number.

Question 4: How many rational and irrational numbers lie between any two real numbers?

Answer: There are infinite rational and irrational numbers lie between any two real numbers.

Question 5: Is it possible to represent irrational numbers on the number line?

Answer: Yes, as we know that each point on the number line represent a real number (i.e. both rational and

irrational), so irrational number can be represented on number line.

Question 6: In which triangle, Pythagoras theorem is applicable?

Answer: Right angled triangle.

Question 7: Give some examples of irrational numbers?

Answer: Some examples of irrational numbers are $\sqrt{5}$, 3 ? $\sqrt{7}$, 2π , etc.

Question 8: Can we represent the reciprocal of zero on the number line?

Answer: No, because reciprocal of zero is undefined term, so we cannot represent on number line.

Question 9: In a square root spiral, is it true that in each square root of natural number is equal to the square root of

the sum of 1 and previous natural number (> 1)?

Answer: Yes.

Question 10: Is it possible that we make a square root spiral of negative nymbers?

Answer: No.